

Welcome to DSQL’s documentation!

Contents:

	Overview
	Goals of DSQL

	DSQL by example

	DSQL is Part of Agile Toolkit

	Requirements

	Installation

	Getting Started

	Contributing
	Guidelines

	Review and Approval

	Running the tests

	Reporting a security vulnerability

	Quickstart
	Basic Concepts

	Getting Started

	Creating Objects and PDO

	Query Building

	Query Mode

	Fetching Result

	Connection

	Expressions
	Properties, Arguments, Parameters
	Parameters

	Creating Expression

	Expression Template

	Nested expressions

	Rendering

	Executing Expressions

	Magic an Debug Methods

	Escaping Methods

	Other Properties

	Queries
	Method invocation principles

	Query Modes

	Chaining

	Using query as expression

	Modifying Select Query
	Setting Table

	Setting Fields

	Setting where and having clauses

	Grouping results by field

	Joining with other tables

	Limiting result-set

	Ordering result-set

	Insert and Replace query
	Set value to a field

	Set Insert Options

	Update Query
	Set Conditions

	Set value to a field

	Other settings

	Delete Query
	Set Conditions

	Other settings

	Dropping attributes

	Other Methods

	Properties

	Results

	Transactions

	Advanced Topics
	Advanced Connections
	Using DSQL without Connection

	Using in Existing Framework

	Using Dumper and Counter

	Proxy Connection

	Extending Query Class
	Adding new vendor support through extension

	Adding New Query Modes

	Manual Query Execution

	Exception Class

	Vendor support and Extensions
	Other Interesting Drivers

	3rd party vendor support

Indices and tables

	Index

	Module Index

	Search Page

Overview

DSQL is a dynamic SQL query builder. You can write multi-vendor queries in PHP
profiting from better security, clean syntax and most importantly – sub-query
support. With DSQL you stay in control of when queries are executed and what
data is transmitted. DSQL is easily composable – build one query and use it as
a part of other query.

Goals of DSQL

	simple and concise syntax

	consistently scalable (e.g. 5 levels of sub-queries, 10 with joins and 15
parameters? no problem)

	“One Query” paradigm

	support for PDO vendors as well as NoSQL databases (with query language
similar to SQL)

	small code footprint (over 50% less than competing frameworks)

	free, licensed under MIT

	no dependencies

	
	follows design paradigms:

	
	“PHP the Agile way [https://github.com/atk4/dsql/wiki/PHP-the-Agile-way]”

	“Functional ORM [https://github.com/atk4/dsql/wiki/Functional-ORM]”

	“Open to extend [https://github.com/atk4/dsql/wiki/Open-to-Extend]”

	“Vendor Transparency [https://github.com/atk4/dsql/wiki/Vendor-Transparency]”

DSQL by example

The simplest way to explain DSQL is by example:

$query = new atk4\dsql\Query();
$query ->table('employees')
 ->where('birth_date','1961-05-02')
 ->field('count(*)')
 ;
echo "Employees born on May 2, 1961: ".$query->getOne();

The above code will execute the following query:

select count(*) from `salary` where `birth_date` = :a
 :a = "1961-05-02"

DSQL can also execute queries with multiple sub-queries, joins, expressions
grouping, ordering, unions as well as queries on result-set.

	See Quickstart if you would like to start learning DSQL.

	See https://github.com/atk4/dsql-primer for various working
examples of using DSQL with a real data-set.

DSQL is Part of Agile Toolkit

DSQL is a stand-alone and lightweight library with no dependencies and can be
used in any PHP project, big or small.

[image: Agile Toolkit Stack]

DSQL is also a part of Agile Toolkit [http://agiletoolkit.org/] framework and works best with
Agile Models [https://github.com/atk4/models]. Your project may benefit from a higher-level data abstraction
layer, so be sure to look at the rest of the suite.

Requirements

	PHP 5.5 and above

Installation

The recommended way to install DSQL is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project has and it
automatically installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php
php composer.phar require atk4/dsql

You can specify DSQL as a project or module dependency in composer.json:

{
 "require": {
 "atk4/dsql": "*"
 }
}

After installing, you need to require Composer’s autoloader in your PHP file:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure auto-loading, and
other best-practices for defining dependencies at
getcomposer.org [http://getcomposer.org].

Getting Started

Continue reading Quickstart where you will learn about basics of DSQL
and how to use it to it’s full potential.

Contributing

Guidelines

	DSQL utilizes PSR-1, PSR-2, PSR-4, and PSR-7.

	DSQL is meant to be lean and fast with very few dependencies. This means
that not every feature request will be accepted.

	All pull requests must include unit tests to ensure the change works as
expected and to prevent regressions.

	All pull requests must include relevant documentation or amend the existing
documentation if necessary.

Review and Approval

	All code must be submitted through pull requests on GitHub

	Any of the project managers may Merge your pull request, but it must not be
the same person who initiated the pull request.

Running the tests

In order to contribute, you’ll need to checkout the source from GitHub and
install DSQL dependencies using Composer:

git clone https://github.com/atk4/dsql.git
cd dsql && curl -s http://getcomposer.org/installer | php && ./composer.phar install --dev

DSQL is unit tested with PHPUnit. Run the tests using the Makefile:

make tests

There are also vendor-specific test-scripts which will require you to
set database. To run them:

All unit tests including SQLite database engine tests
phpunit --config phpunit.xml

MySQL database engine tests
phpunit --config phpunit-mysql.xml

Look inside these the .xml files for further information and connection details.

Reporting a security vulnerability

We want to ensure that DSQL is a secure library for everyone. If you’ve
discovered a security vulnerability in DSQL, we appreciate your help in
disclosing it to us in a responsible manner [http://en.wikipedia.org/wiki/Responsible_disclosure].

Publicly disclosing a vulnerability can put the entire community at risk. If
you’ve discovered a security concern, please email us at
security@agiletoolkit.org. We’ll work with you to make sure that we understand
the scope of the issue, and that we fully address your concern. We consider
correspondence sent to security@agiletoolkit.org our highest priority, and work
to address any issues that arise as quickly as possible.

After a security vulnerability has been corrected, a security hot-fix release
will be deployed as soon as possible.

Quickstart

When working with DSQL you need to understand the following basic concepts:

Basic Concepts

	Expression (see expr)

	Expression object, represents a part of a SQL query. It can
be used to express advanced logic in some part of a query, which
Query itself might not support or can express a full statement
Never try to look for “raw” queries, instead build expressions and think
about escaping.

	Query (see query)

	Object of a Query class can be used for building and executing
valid SQL statements such as SELECT, INSERT, UPDATE, etc. After creating
Query object you can call various methods to add “table”,
“where”, “from” parts of your query.

	Connection

	Represents a connection to the database. If you already have a PDO object
you can feed it into Expression or Query, but
for your comfort there is a Connection class with very little
overhead.

Getting Started

We will start by looking at the Query building, because you do
not need a database to create a query:

use atk4\dsql\Query;

$query = new Query(['connection' => $pdo]);

Once you have a query object, you can add parameters by calling some of it’s
methods:

$query
 ->table('employees')
 ->where('birth_date', '1961-05-02')
 ->field('count(*)')
 ;

Finally you can get the data:

$count = $query->getOne();

While DSQL is simple to use for basic queries, it also gives a huge power and
consistency when you are building complex queries. Unlike other query builders
that sometimes rely on “hacks” (such as method whereOr()) and claim to be useful
for “most” database operations, with DSQL, you can use DSQL to build ALL of your
database queries.

This is hugely beneficial for frameworks and large applications, where
various classes need to interact and inject more clauses/fields/joins into your
SQL query.

DSQL does not resolve conflicts between similarly named tables, but it gives you
all the options to use aliases.

The next example might be a bit too complex for you, but still read through and
try to understand what each section does to your base query:

// Establish a query looking for a maximum salary
$salary = new Query(['connection'=>$pdo]);

// Create few expression objects
$e_ms = $salary->expr('max(salary)');
$e_df = $salary->expr('TimeStampDiff(month, from_date, to_date)');

// Configure our basic query
$salary
 ->table('salary')
 ->field(['emp_no', 'max_salary'=>$e_ms, 'months'=>$e_df])
 ->group('emp_no')
 ->order('-max_salary')

// Define sub-query for employee "id" with certain birth-date
$employees = $salary->dsql()
 ->table('employees')
 ->where('birth_date', '1961-05-02')
 ->field('emp_no')
 ;

// Use sub-select to condition salaries
$salary->where('emp_no', $employees);

// Join with another table for more data
$salary
 ->join('employees.emp_id', 'emp_id')
 ->field('employees.first_name');

// Finally, fetch result
foreach ($salary as $row) {
 echo "Data: ".json_encode($row)."\n";
}

The above query resulting code will look like this:

SELECT
 `emp_no`,
 max(salary) `max_salary`,
 TimeStampDiff(month, from_date, to_date) `months`
FROM
 `salary`
JOIN
 `employees` on `employees`.`emp_id` = `salary`.`emp_id`
WHERE
 `salary`.`emp_no` in (select `id` from `employees` where `birth_date` = :a)
GROUP BY `emp_no`
ORDER BY max_salary desc

:a = "1961-05-02"

Using DSQL in higher level ORM libraries and frameworks allows them to focus on
defining the database logic, while DSQL can perform the heavy-lifting of query
building and execution.

Creating Objects and PDO

DSQL classes does not need database connection for most of it’s work. Once you
create new instance of Expression or Query you can
perform operation and finally call Expression::render() to get the
final query string:

use atk4\dsql\Query;

$q = (new Query())->table('user')->where('id', 1)->field('name');
$query = $q->render();
$params = $q->params;

When used in application you would typically generate queries with the
purpose of executing them, which makes it very useful to create a
Connection object. The usage changes slightly:

$c = atk4\dsql\Connection::connect($dsn, $user, $password);
$q = $c->dsql()->table('user')->where('id', 1)->field('name');

$name = $q->getOne();

You no longer need “use” statement and Connection class will
automatically do some of the hard work to adopt query building for your
database vendor.
There are more ways to create connection, see `Advanced Connections`_ section.

The format of the $dsn is the same as with
PDO class [http://php.net/manual/en/ref.pdo-mysql.connection.php].
If you need to execute query that is not supported by DSQL, you should always
use expressions:

$tables = $c -> expr('show tables like []', [$like_str])->get();

DSQL classes are mindful about your SQL vendor and it’s quirks, so when you’re
building sub-queries with Query::dsql, you can avoid some nasty
problems:

$sqlite_c ->dsql()->table('user')->truncate();

The above code will work even though SQLite does not support truncate. That’s
because DSQL takes care of this.

Query Building

Each Query object represents a query to the database in-the-making.
Calling methods such as Query::table or Query::where
affect part of the query you’re making. At any time you can either execute your
query or use it inside another query.

Query supports majority of SQL syntax out of the box.
Some unusual statements can be easily added by customizing template for specific
query and we will look into examples in Extending Query Class

Query Mode

When you create a new Query object, it is going to be a SELECT
query by default. If you wish to execute update operation instead, you
simply call Query::update, for delete - Query::delete
(etc). For more information see Query Modes.
You can actually perform multiple operations:

$q = $c->dsql()->table('employee')->where('emp_no', 1234);
$backup_data = $q->get();
$q->delete();

A good practice is to re-use the same query object before you branch out and
perform the action:

$q = $c->dsql()->table('employee')->where('emp_no', 1234);

if ($confirmed) {
 $q->delete();
} else {
 echo "Are you sure you want to delete ".$q->field('count(*)')." employees?";
}

Fetching Result

When you are selecting data from your database, DSQL will prepare and execute
statement for you. Depending on the connection, there may be some magic
involved, but once the query is executed, you can start streaming your data:

foreach ($query->table('employee')->where('dep_no',123) as $employee) {
 echo $employee['first_name']."\n";
}

In most cases, when iterating you’ll have PDOStatement, however this may not
always be the case, so be cautious. Remember that DQSL can support vendors
that PDO does not support as well or can use Proxy Connection.
In that case you may end up with other Generator/Iterator but regardless,
$employee will always contain associative array representing one row of data.
(See also `Manual Query Execution`_).

Connection

DSQL supports various database vendors natively but also supports 3rd party
extensions.
For current status on database support see: Vendor support and Extensions.

	
class Connection

	

Connection class is handy to have if you plan on building and executing
queries in your application. It’s more appropriate to store
connection in a global variable or global class:

$app->db = atk4\dsql\Connection::connect($dsn, $user, $pass);

	
static Connection::connect($dsn, $user = null, $password = null, $args =[])

	Determine which Connection class should be used for specified $dsn,
create new object of this connection class and return.

	Parameters

	
	$dsn (string) – DSN, see http://php.net/manual/en/ref.pdo-mysql.connection.php

	$user (string) – username

	$password (string) – password

	$args (array) – Other default properties for connection class.

	Returns

	new Connection

This should allow you to access this class from anywhere and generate either
new Query or Expression class:

$query = $app->db->dsql();

// or

$expr = $app->db->expr('show tables');

	
Connection::dsql($args)

	Creates new Query class and sets Query::connection.

	Parameters

	
	$args (array) – Other default properties for connection class.

	Returns

	new Query

	
Connection::expr($template, $args)

	Creates new Expression class and sets Expression::connection.

	Parameters

	
	$args (array) – Other default properties for connection class.

	$args – Other default properties for connection class.

	Returns

	new Expression

Here is how you can use all of this together:

$dsn = 'mysql:host=localhost;port=3307;dbname=testdb';

$c = atk4\dsql\Connection::connect($dsn, 'root', 'root');
$expr = $c -> expr("select now()");

echo "Time now is : ". $expr;

connect will determine appropriate class that can be used for this
DSN string. This can be a PDO class or it may try to use a 3rd party connection
class.

Connection class is also responsible for executing queries. This is only used
if you connect to vendor that does not use PDO.

	
Connection::execute(Expression $expr)

	Creates new Expression class and sets Expression::connection.

	Parameters

	
	$expr (Expression) – Expression (or query) to execute

	Returns

	PDOStatement, Iterable object or Generator.

	
class Expression

	

Expressions

Expression class implements a flexible way for you to define any custom
expression then execute it as-is or as a part of another query or expression.
Expression is supported anywhere in DSQL to allow you to express SQL syntax
properly.

Quick Example:

$query -> where('time', $query->expr(
 'between "[]" and "[]"',
 [$from_time, $to_time]
));

// Produces: .. where `time` between :a and :b

Another use of expression is to supply field instead of value and vice versa:

$query -> where($query->expr(
 '[] between time_from and time_to',
 [$time]
));

// Produces: where :a between time_from and time_to

Yet another curious use for the DSQL library is if you have certain object in
your ORM implementing Expressionable interface. Then you can also
use it within expressions:

$query -> where($query->expr(
 '[] between [] and []',
 [$time, $model->getElement('time_form'), $model->getElement('time_to')]
));

// Produces: where :a between `time_from` and `time_to`

Another uses for expressions could be:

	Sub-Queries

	SQL functions, e.g. IF, CASE

	nested AND / OR clauses

	vendor-specific queries - “describe table”

	non-traditional constructions , UNIONS or SELECT INTO

Properties, Arguments, Parameters

Be careful when using those similar terms as they refer to different things:

	Properties refer to object properties, e.g. $expr->template,
see Other Properties

	Arguments refer to template arguments, e.g. select * from [table],
see Expression Template

	Parameters refer to the way of passing user values within a query
where id=:a and are further explained below.

Parameters

Because some values are un-safe to use in the query and can contain dangerous
values they are kept outside of the SQL query string and are using
PDO’s bindParam [http://php.net/manual/en/pdostatement.bindparam.php]
instead. DSQL can consist of multiple objects and each object may have
some parameters. During rendering those parameters are joined together to
produce one complete query.

	
property Expression::$params

	This public property will contain the actual values of all the parameters.
When multiple queries are merged together, their parameters are
interlinked [http://php.net/manual/en/language.references.php].

Creating Expression

use atk4\dsql\Expression;

$expr = new Expression("NOW()");

You can also use expr() method to create expression, in which case
you do not have to define “use” block:

$query -> where('time', '>', $query->expr('NOW()'));

// Produces: .. where `time` > NOW()

You can specify some of the expression properties through first argument of the
constructor:

$expr = new Expression(["NOW()", 'connection' => $pdo]);

Scroll down for full list of properties.

Expression Template

When you create a template the first argument is the template. It will be stored
in $template property. Template string can contain arguments in a
square brackets:

	coalesce([], []) is same as coalesce([0], [1])

	coalesce([one], [two])

Arguments can be specified immediately through an array as a second argument
into constructor or you can specify arguments later:

$expr = new Expression(
 "coalesce([name], [surname])",
 ['name' => $name, 'surname' => $surname]
);

// is the same as

$expr = new Expression("coalesce([name], [surname])");
$expr['name'] = $name;
$expr['surname'] = $surname;

Nested expressions

Expressions can be nested several times:

$age = new Expression("coalesce([age], [default_age])");
$age['age'] = new Expression("year(now()) - year(birth_date)");
$age['default_age'] = 18;

$query -> table('user') -> field($age, 'calculated_age');

// select coalesce(year(now()) - year(birth_date), :a) `calculated_age` from `user`

When you include one query into another query, it will automatically take care
of all user-defined parameters (such as value 18 above) which will make sure
that SQL injections could not be introduced at any stage.

Rendering

An expression can be rendered into a valid SQL code by calling render() method.
The method will return a string, however it will use references for parameters.

	
Expression::render()

	Converts Expression object to a string. Parameters are
replaced with :a, :b, etc. Their original values can be found in
params.

Executing Expressions

If your expression is a valid SQL query, (such as `show databases`) you
might want to execute it. Expression class offers you various ways to execute
your expression. Before you do, however, you need to have $connection
property set. (See Connecting to Database on more details). In short the
following code will connect your expression with the database:

$expr = new Expression('connection'=>$pdo_dbh);

If you are looking to use connection Query class, you may want to
consider using a proper vendor-specific subclass:

$query = new Query_MySQL('connection'=>$pdo_dbh);

If your expression already exist and you wish to associate it with connection
you can simply change the value of $connection property:

$expr -> connection = $pdo_dbh;

Finally, you can pass connection class into execute directly.

	
Expression::execute($connection = null)

	Executes expression using current database connection or the one you
specify as the argument:

$stmt = $expr -> execute($pdo_dbh);

returns PDOStamement [http://php.net/manual/en/class.pdostatement.php] if
you have used PDO [http://php.net/manual/en/class.pdo.php] class or
ResultSet if you have used Connection.

	
Expression::expr($properties, $arguments)

	Creates a new Expression object that will inherit current
$connection property. Also if you are creating a
vendor-specific expression/query support, this method must return
instance of your own version of Expression class.

The main principle here is that the new object must be capable of working
with database connection.

	
Expression::get()

	Executes expression and return whole result-set in form of array of hashes:

$data = new Expression([
 'connection' => $pdo_dbh,
 'template' => 'show databases'
])->get();
echo json_encode($data);

The output would be

[
 { "Database": "mydb1" },
 { "Database": "mysql" },
 { "Database": "test" }
]

	
Expression::getRow()

	Executes expression and returns first row of data from result-set as a hash:

$data = new Expression([
 'connection' => $pdo_dbh,
 'template' => 'SELECT @@global.time_zone, @@session.time_zone'
])->getRow()

echo json_encode($data);

The output would be

{ "@@global.time_zone": "SYSTEM", "@@session.time_zone": "SYSTEM" }

	
Expression::getOne()

	Executes expression and return first value of first row of data from
result-set:

$time = new Expression([
 'connection' => $pdo_dbh,
 'template' => 'now()'
])->getOne();

Magic an Debug Methods

	
Expression::__toString()

	You may use Expression or Query as a string. It
will be automatically executed when being cast by executing getOne.
Because the __toString() [http://php.net/manual/en/language.oop5.magic.php#object.tostring]
is not allowed to throw exceptions we encourage you not to use this format.

	
Expression::__debugInfo()

	This method is used to prepare a sensible information about your query
when you are executing var_dump($expr). The output will be HTML-safe.

	
Expression::debug()

	Calling this method will set debug into true and the further
execution to render will also attempt to echo query.

	
Expression::getDebugQuery($html = false)

	Outputs query as a string by placing parameters into their respective
places. The parameters will be escaped, but you should still avoid using
generated query as it can potentially make you vulnerable to SQL injection.

This method will use HTML formatting if argument is passed.

In order for HTML parsing to work and to make your debug queries better
formatted, install sql-formatter:

composer require jdorn/sql-formatter

Escaping Methods

The following methods are useful if you’re building your own code for rendering
parts of the query. You must not call them in normal circumstances.

	
Expression::_consume($sql_code)

	Makes $sql_code part of $this expression. Argument may be either a string
(which will be escaped) or another Expression or Query.
If specified Query is in “select” mode, then it’s automatically
placed inside brackets:

$query->_consume('first_name'); // `first_name`
$query->_consume($other_query); // will merge parameters and return string

	
Expression::escape($sql_code)

	Creates new expression where $sql_code appears escaped. Use this method as a
conventional means of specifying arguments when you think they might have
a nasty back-ticks or commas in the field names. I generally discourage
you from using this method. Example use would be:

$query->field('foo,bar'); // escapes and adds 2 fields to the query
$query->field($query->escape('foo,bar')); // adds field `foo,bar` to the query
$query->field(['foo,bar']); // adds single field `foo,bar`

$query->order('foo desc'); // escapes and add `foo` desc to the query
$query->field($query->escape('foo desc')); // adds field `foo desc` to the query
$query->field(['foo desc']); // adds `foo` desc anyway

	
Expression::_escape($sql_code)

	Always surrounds $sql code with back-ticks.

	
Expression::_escapeSoft($sql_code)

	Surrounds $sql code with back-ticks.

It will smartly escape table.field type of strings resulting in table.`field`.

Will do nothing if it finds “*”, “`” or “(” character in $sql_code:

$query->_escape('first_name'); // `first_name`
$query->_escape('first.name'); // `first`.`name`
$query->_escape('(2+2)'); // (2+2)
$query->_escape('*'); // *

	
Expression::_param($value)

	Converts value into parameter and returns reference. Used only during query
rendering. Consider using _consume() instead, which will also
handle nested expressions properly.

Other Properties

	
property Expression::$template

	Template which is used when rendering.
You can set this with either new Expression(“show tables”)
or new Expression([“show tables”])
or new Expression([“template” => “show tables”]).

	
property Expression::$connection

	PDO connection object or any other DB connection object.

	
property Expression::$paramBase

	Normally parameters are named :a, :b, :c. You can specify a different
param base such as :param_00 and it will be automatically increased
into :param_01 etc.

	
property Expression::$debug

	If true, then next call of execute will echo results
of getDebugQuery.

	
class Query

	

Queries

Query class represents your SQL query in-the-making. Once you create object of
the Query class, call some of the methods listed below to modify your query. To
actually execute your query and start retrieving data, see fetching-result
section.

You should use Connection if possible to create your query objects. All
examples below are using $c->dsql() method which generates Query linked to
your established database connection.

Once you have a query object you can execute modifier methods such as
field() or table() which will change the way how your
query will act.

Once the query is defined, you can either use it inside another query or
expression or you can execute it in exchange for result set.

Quick Example:

$query = $c->dsql();

$query -> field('name');
$query -> where('id', 123);

$name = $query -> getOne();

Method invocation principles

Methods of Query are designed to be flexible and concise. Most methods have a
variable number of arguments and some arguments can be skipped:

$query -> where('id', 123);
$query -> where('id', '=', 123); // the same

Most methods will accept Expression or strings. Strings are
escaped or quoted (depending on type of argument). By using Expression
you can bypass the escaping.

There are 2 types of escaping:

	Expression::_escape(). Used for field and table names. Surrounds name with `.

	Expression::_param(). Will convert value into parameter and replace with :a

In the next example $a is escaped but $b is parametrized:

$query -> where('a', 'b');

// where `a` = "b"

If you want to switch places and execute where “b” = `a`, then you can resort
to Expressions:

$query -> where($c->expr('{} = []', ['b', 'a']));

Parameters which you specify into Expression will be preserved and linked into
the $query properly.

Query Modes

When you create new Query it always start in “select” mode. You can switch
query to a different mode using mode. Normally you shouldn’t bother
calling this method and instead use one of the following methods.
They will switch the query mode for you and execute query:

	
Query::select()

	Switch back to “select” mode and execute select statement.

See Modifying Select Query.

	
Query::insert()

	Switch to insert mode and execute statement.

See Insert and Replace query.

	
Query::update()

	Switch to update mode and execute statement.

See Update Query.

	
Query::replace()

	Switch to replace mode and execute statement.

See Insert and Replace query.

	
Query::delete()

	Switch to delete mode and execute statement.

See Delete Query.

	
Query::truncate()

	Switch to truncate mode and execute statement.

If you don’t switch the mode, your Query remains in select mode and you can
fetch results from it anytime.

The pattern of defining arguments for your Query and then executing allow you
to re-use your query efficiently:

$data = ['name'=>'John', 'surname'=>'Smith']

$query = $c->dsql();
$query
 -> where('id', 123)
 -> field('id')
 -> table('user')
 -> set($data)
 ;

$row = $query->getRow();

if ($row) {
 $query
 ->set('revision', $query->expr('revision + 1'))
 ->update()
 ;
} else {
 $query
 ->set('revision', 1)
 ->insert();
}

The example above will perform a select query first:

	select id from user where id=123

If a single row can be retrieved, then the update will be performed:

	update user set name=”John”, surname=”Smith”, revision=revision+1 where id=123

Otherwise an insert operation will be performed:

	insert into user (name,surname,revision) values (“John”, “Smith”, 1)

Chaining

Majority of methods return $this when called, which makes it pretty
convenient for you to chain calls by using ->fx() multiple times as
illustrated in last example.

You can also combine creation of the object with method chaining:

$age = $c->dsql()->table('user')->where('id', 123)->field('age')->getOne();

Using query as expression

You can use query as expression where applicable. The query will get a special
treatment where it will be surrounded in brackets. Here are few examples:

$q = $c->dsql()
 ->table('employee');

$q2 = $c->dsql()
 ->field('name')
 ->table($q);

$q->get();

This query will perform select name from (select * from employee):

$q1 = $c->dsql()
 ->table('sales')
 ->field('date')
 ->field('amount', null, 'debit');

$q2 = $c->dsql()
 ->table('purchases')
 ->field('date')
 ->field('amount', null, 'credit');

$u = $c->dsql("[] union []", [$q1, $q2]);

$q = $c->dsql()
 ->field('date,debit,credit')
 ->table($u, 'derrivedTable')
 ;

$q->get();

This query will perform union between 2 table selects resulting in the following
query:

select `date`,`debit`,`credit` from (
 (select `date`,`amount` `debit` from `sales`) union
 (select `date`,`amount` `credit` from `purchases`)
) `derrivedTable`

Modifying Select Query

Setting Table

	
Query::table($table, $alias)

	Specify a table to be used in a query.

	Parameters

	
	$table (mixed) – table such as “employees”

	$alias (mixed) – alias of table

	Returns

	$this

This method can be invoked using different combinations of arguments.
Follow the principle of specifying the table first, and then optionally provide
an alias. You can specify multiple tables at the same time by using comma or
array (although you won’t be able to use the alias there).
Using keys in your array will also specify the aliases.

Basic Examples:

$c->dsql()->table('user');
 // SELECT * from `user`

$c->dsql()->table('user','u');
 // aliases table with "u"
 // SELECT * from `user` `u`

$c->dsql()->table('user')->table('salary');
 // specify multiple tables. Don't forget to link them by using "where"
 // SELECT * from `user`, `salary`

$c->dsql()->table(['user','salary']);
 // identical to previous example
 // SELECT * from `user`, `salary`

$c->dsql()->table(['u'=>'user','s'=>'salary']);
 // specify aliases for multiple tables
 // SELECT * from `user` `u`, `salary` `s`

Inside your query table names and aliases will always be surrounded by backticks.
If you want to use a more complex expression, use Expression as
table:

$c->dsql()->table(
 $c->expr('(SELECT id FROM user UNION select id from document)'),
 'tbl'
);
// SELECT * FROM (SELECT id FROM user UNION SELECT id FROM document) `tbl`

Finally, you can also specify a different query instead of table, by simply
passing another Query object:

$sub_q = $c->dsql();
$sub_q -> table('employee');
$sub_q -> where('name', 'John');

$q = $c->dsql();
$q -> field('surname');
$q -> table($sub_q, 'sub');

// SELECT `surname` FROM (SELECT * FROM `employee` WHERE `name` = :a) `sub`

Method can be executed several times on the same Query object.

Setting Fields

	
Query::field($fields, $alias = null)

	Adds additional field that you would like to query. If never called, will
default to defaultField, which normally is *.

This method has several call options. $field can be array of fields and
also can be an Expression or Query

	Parameters

	
	$fields (string|array|object) – Specify list of fields to fetch

	$alias (string) – Optionally specify alias of field in resulting query

	Returns

	$this

Basic Examples:

$query = new Query();
$query->table('user');

$query->field('first_name');
 // SELECT `first_name` from `user`

$query->field('first_name,last_name');
 // SELECT `first_name`,`last_name` from `user`

$query->field('employee.first_name')
 // SELECT `employee`.`first_name` from `user`

$query->field('first_name','name')
 // SELECT `first_name` `name` from `user`

$query->field(['name'=>'first_name'])
 // SELECT `first_name` `name` from `user`

$query->field(['name'=>'employee.first_name']);
 // SELECT `employee`.`first_name` `name` from `user`

If the first parameter of field() method contains non-alphanumeric values
such as spaces or brackets, then field() will assume that you’re passing an
expression:

$query->field('now()');

$query->field('now()', 'time_now');

You may also pass array as first argument. In such case array keys will be
used as aliases (if they are specified):

$query->field(['time_now'=>'now()', 'time_created']);
 // SELECT now() `time_now`, `time_created` ...

$query->field($query->dsql()->table('user')->field('max(age)'), 'max_age');
 // SELECT (SELECT max(age) from user) `max_age` ...

Method can be executed several times on the same Query object.

Setting where and having clauses

	
Query::where($field, $operation, $value)

	Adds WHERE condition to your query.

	Parameters

	
	$field (mixed) – field such as “name”

	$operation (mixed) – comparison operation such as “>” (optional)

	$value (mixed) – value or expression

	Returns

	$this

	
Query::having($field, $operation, $value)

	Adds HAVING condition to your query.

	Parameters

	
	$field (mixed) – field such as “name”

	$operation (mixed) – comparison operation such as “>” (optional)

	$value (mixed) – value or expression

	Returns

	$this

Both methods use identical call interface. They support one, two or three
argument calls.

Pass string (field name), Expression or even Query as
first argument. If you are using string, you may end it with operation, such as
“age>” or “parent_id is not” DSQL will recognize <, >, =, !=, <>, is, is not.

If you haven’t specified parameter as a part of $field, specify it through a
second parameter - $operation. If unspecified, will default to ‘=’.

Last argument is value. You can specify number, string, array, expression or
even null (specifying null is not the same as omitting this argument).
This argument will always be parameterized unless you pass expression.
If you specify array, all elements will be parametrized individually.

Starting with the basic examples:

$q->where('id', 1);
$q->where('id', '=', 1); // same as above

$q->where('id>', 1);
$q->where('id', '>', 1); // same as above

$q->where('id', 'is', null);
$q->where('id', null); // same as above

$q->where('now()', 1); // will not use backticks
$q->where($c->expr('now()'),1); // same as above

$q->where('id', [1,2]); // renders as id in (1,2)

You may call where() multiple times, and conditions are always additive (uses AND).
The easiest way to supply OR condition is to specify multiple conditions
through array:

$q->where([['name', 'like', '%john%'], ['surname', 'like', '%john%']]);
 // .. WHERE `name` like '%john%' OR `surname` like '%john%'

You can also mix and match with expressions and strings:

$q->where([['name', 'like', '%john%'], 'surname is null']);
 // .. WHERE `name` like '%john%' AND `surname` is null

$q->where([['name', 'like', '%john%'], new Expression('surname is null')]);
 // .. WHERE `name` like '%john%' AND surname is null

There is a more flexible way to use OR arguments:

	
Query::orExpr()

	Returns new Query object with method “where()”. When rendered all clauses
are joined with “OR”.

	
Query::andExpr()

	Returns new Query object with method “where()”. When rendered all clauses
are joined with “OR”.

Here is a sophisticated example:

$q = $c->dsql();

$q->table('employee')->field('name');
$q->where('deleted', 0);
$q->where(
 $q
 ->orExpr()
 ->where('a', 1)
 ->where('b', 1)
 ->where(
 $q->andExpr()
 ->where('a', 2)
 ->where('b', 2)
)
);

The above code will result in the following query:

select
 `name`
from
 `employee`
where
 deleted = 0 and
 (`a` = :a or `b` = :b or (`a` = :c and `b` = :d))

Technically orExpr() generates a yet another object that is composed
and renders its calls to where() method:

$q->having(
 $q
 ->orExpr()
 ->where('a', 1)
 ->where('b', 1)
);

having
 (`a` = :a or `b` = :b)

Grouping results by field

	
Query::group($field)

	Group by functionality. Simply pass either field name as string or
Expression object.

	Parameters

	
	$field (mixed) – field such as “name”

	Returns

	$this

The “group by” clause in SQL query accepts one or several fields. It can also
accept expressions. You can call group() with one or several comma-separated
fields as a parameter or you can specify them in array. Additionally you can
mix that with Expression or Expressionable objects.

Few examples:

$q->group('gender');

$q->group('gender,age');

$q->group(['gender', 'age']);

$q->group('gender')->group('age');

$q->group(new Expression('year(date)'));

Method can be executed several times on the same Query object.

Joining with other tables

	
Query::join($foreign_table, $master_field, $join_kind)

	Join results with additional table using “JOIN” statement in your query.

	Parameters

	
	$foreign_table (string|array) – table to join (may include field and alias)

	$master_field (mixed) – main field (and table) to join on or Expression

	$join_kind (string) – ‘left’ (default), ‘inner’, ‘right’ etc - which join type to use

	Returns

	$this

When joining with a different table, the results will be stacked by the SQL
server so that fields from both tables are available. The first argument can
specify the table to join, but may contain more information:

$q->join('address'); // address.id = address_id
 // JOIN `address` ON `address`.`id`=`address_id`

$q->join('address a'); // specifies alias for the table
 // JOIN `address` `a` ON `address`.`id`=`address_id`

$q->join('address.user_id'); // address.user_id = id
 // JOIN `address` ON `address`.`user_id`=`id`

You can also pass array as a first argument, to join multiple tables:

$q->table('user u');
$q->join(['a'=>'address', 'c'=>'credit_card', 'preferences']);

The above code will join 3 tables using the following query syntax:

join
 address as a on a.id = u.address_id
 credit_card as c on c.id = u.credit_card_id
 preferences on preferences.id = u.preferences_id

However normally you would have user_id field defined in your supplementary
tables so you need a different syntax:

$q->table('user u');
$q->join([
 'a'=>'address.user_id',
 'c'=>'credit_card.user_id',
 'preferences.user_id'
]);

The second argument to join specifies which existing table/field is
used in on condition:

$q->table('user u');
$q->join('user boss', 'u.boss_user_id');
 // JOIN `user` `boss` ON `boss`.`id`=`u`.`boss_user_id`

By default the “on” field is defined as $table.”_id”, as you have seen in the
previous examples where join was done on “address_id”, and “credit_card_id”.
If you have specified field explicitly in the foreign field, then the “on” field
is set to “id”, like in the example above.

You can specify both fields like this:

$q->table('employees');
$q->join('salaries.emp_no', 'emp_no');

If you only specify field like this, then it will be automatically prefixed with
the name or alias of your main table. If you have specified multiple tables,
this won’t work and you’ll have to define name of the table explicitly:

$q->table('user u');
$q->join('user boss', 'u.boss_user_id');
$q->join('user super_boss', 'boss.boss_user_id');

The third argument specifies type of join and defaults to “left” join. You can
specify “inner”, “straight” or any other join type that your database support.

Method can be executed several times on the same Query object.

Joining on expression

For a more complex join conditions, you can pass second argument as expression:

$q->table('user', 'u');
$q->join('address a', new Expression('a.name like u.pattern'));

Limiting result-set

	
Query::limit($cnt, $shift)

	Limit how many rows will be returned.

	Parameters

	
	$cnt (int) – number of rows to return

	$shift (int) – offset, how many rows to skip

	Returns

	$this

Use this to limit your Query result-set:

$q->limit(5, 10);
 // .. LIMIT 10, 5

$q->limit(5);
 // .. LIMIT 0, 5

Ordering result-set

	
Query::order($order, $desc)

	Orders query result-set in ascending or descending order by single or
multiple fields.

	Parameters

	
	$order (int) – one or more field names, expression etc.

	$desc (int) – pass true to sort descending

	Returns

	$this

Use this to order your Query result-set:

$q->order('name'); // .. order by name
$q->order('name desc'); // .. order by name desc
$q->order('name desc, id asc') // .. order by name desc, id asc
$q->order('name',true); // .. order by name desc

Method can be executed several times on the same Query object.

Insert and Replace query

Set value to a field

	
Query::set($field, $value)

	Assigns value to the field during insert.

	Parameters

	
	$field (string) – name of the field

	$value (mixed) – value or expression

	Returns

	$this

Example:

$q->table('user')->set('name', 'john')->insert();
 // insert into user (name) values (john)

$q->table('log')->set('date', $q->expr('now()'))->insert();
 // insert into log (date) values (now())

Method can be executed several times on the same Query object.

Set Insert Options

Update Query

Set Conditions

Same syntax as for Select Query.

Set value to a field

Same syntax as for Insert Query.

Other settings

Limit and Order are normally not included to avoid side-effects, but you can
modify $template_update to include those tags.

Delete Query

Set Conditions

Same syntax as for Select Query.

Other settings

Limit and Order are normally not included to avoid side-effects, but you can
modify $template_update to include those tags.

Dropping attributes

If you have called where() several times, there is a way to remove all the
where clauses from the query and start from beginning:

	
Query::reset($tag)

	
	Parameters

	
	$tag (string) – part of the query to delete/reset.

Example:

$q
 ->table('user')
 ->where('name', 'John');
 ->reset('where')
 ->where('name', 'Peter');

// where name = 'Peter'

Other Methods

	
Query::dsql($properties)

	Use this instead of new Query() if you want to automatically bind query
to the same connection as the parent.

	
Query::option($option, $mode)

	Use this to set additional options for particular query mode.
For example:

$q

->table(‘test’)
->field(‘name’)
->set(‘name’, ‘John’)
->option(‘calc_found_rows’) // for default select mode
->option(‘ignore’, ‘insert’) // for insert mode
;

$q->select(); // select calc_found_rows name from test
$q->insert(); // insert ignore into test (name) values (name = ‘John’)

	
Query::_set_args($what, $alias, $value)

	Internal method which sets value in Expression::args array.
It doesn’t allow duplicate aliases and throws Exception in such case.
Argument $what can be ‘table’ or ‘field’.

	
Query::caseExpr($operand)

	Returns new Query object with CASE template.
You can pass operand as parameter to create SQL like
CASE <operand> WHEN <expression> THEN <expression> END type of SQL statement.

	
Query::when($when, $then)

	Set WHEN condition and THEN expression for CASE statement.

	
Query::otherwise($else)

	Set ELSE expression for CASE statement.

Few examples:

	$s = $this->q()->caseExpr()

	->when([‘status’,’New’], ‘t2.expose_new’)
->when([‘status’, ‘like’, ‘%Used%’], ‘t2.expose_used’)
->otherwise(null);

case when “status” = ‘New’ then “t2”.”expose_new” when “status” like ‘%Used%’ then “t2”.”expose_used” else null end

	$s = $this->q()->caseExpr(‘status’)

	->when(‘New’, ‘t2.expose_new’)
->when(‘Used’, ‘t2.expose_used’)
->otherwise(null);

case “status” when ‘New’ then “t2”.”expose_new” when ‘Used’ then “t2”.”expose_used” else null end

Properties

	
property Query::$mode

	Query will use one of the predefined “templates”. The mode will contain
name of template used. Basically it’s array key of $templates property.
See Query Modes.

	
property Query::$defaultField

	If no fields are defined, this field is used.

	
property Query::$template_select

	Template for SELECT query. See Query Modes.

	
property Query::$template_insert

	Template for INSERT query. See Query Modes.

	
property Query::$template_replace

	Template for REPLACE query. See Query Modes.

	
property Query::$template_update

	Template for UPDATE query. See Query Modes.

	
property Query::$template_delete

	Template for DELETE query. See Query Modes.

	
property Query::$template_truncate

	Template for TRUNCATE query. See Query Modes.

Results

When query is executed by Connection or
PDO [http://php.net/manual/en/pdo.query.php], it will return an object that
can stream results back to you. The PDO class execution produces a
PDOStatement [http://php.net/manual/en/class.pdostatement.php] object which
you can iterate over.

If you are using a custom connection, you then will also need a custom object
for streaming results.

The only requirement for such an object is that it has to be a
Generator [http://php.net/manual/en/language.generators.syntax.php].
In most cases developers will expect your generator to return sequence
of id=>hash representing a key/value result set.

write more

Transactions

When you work with the DSQL, you can work with transactions. There are 2
enhancements to the standard functionality of transactions in DSQL:

	You can start nested transactions.

	You can use Connection::atomic() which has a nicer syntax.

It is recommended to always use atomic() in your code.

	
class Connection

	

	
Connection::atomic($callback)

	Execute callback within the SQL transaction. If callback encounters an
exception, whole transaction will be automatically rolled back:

$c->atomic(function() use($c) {
 $c->dsql('user')->set('balance=balance+10')->where('id', 10)->update();
 $c->dsql('user')->set('balance=balance-10')->where('id', 14)->update();
});

atomic() can be nested.
The successful completion of a top-most method will commit everything.
Rollback of a top-most method will roll back everything.

	
Connection::beginTransaction()

	Start new transaction. If already started, will do nothing but will increase
Connection::$transaction_depth.

	
Connection::commit()

	Will commit transaction, however if Connection::beginTransaction
was executed more than once, will only decrease
Connection::$transaction_depth.

	
Connection::inTransaction()

	Returns true if transaction is currently active. There is no need for you to
ever use this method.

	
Connection::rollBack()

	Roll-back the transaction, however if Connection::beginTransaction
was executed more than once, will only decrease
Connection::$transaction_depth.

Warning

If you roll-back internal transaction and commit external
transaction, then result might be unpredictable.
Please discuss this https://github.com/atk4/dsql/issues/89

Advanced Topics

DSQL has huge capabilities in terms of extending. This chapter explains just
some of the ways how you can extend this already incredibly powerful library.

Advanced Connections

Connection is incredibly lightweight and powerful in DSQL.
The class tries to get out of your way as much as possible.

Using DSQL without Connection

You can use Query and Expression without connection
at all. Simply create expression:

$expr = new Expression('show tables like []', ['foo%']);

or query:

$query = (new Query())->table('user')->where('id', 1);

When it’s time to execute you can specify your PDO manually:

$stmt = $expr->execute($pdo);
foreach($stmt as $row){
 echo json_encode($row)."\n";
}

With queries you might need to select mode first:

$stmt = $query->selectMode('delete')->execute($pdo);

The Expresssion::execute is a convenient way to prepare query,
bind all parameters and get PDOStatement, but if you wish to do it manually,
see Manual Query Execution.

Using in Existing Framework

If you use DSQL inside another framework, it’s possible that there is already
a PDO object which you can use. In Laravel you can optimize some of your queries
by switching to DSQL:

$pdo = DB::connection()->getPdo();
$c = new Connection(['connection'=>$pdo]);

$user_ids = $c->dsql()->table('expired_users')->field('user_id');
$c->dsql()->table('user')->where('id', 'in', $user_ids)->set('active', 0)->update();

// Native Laravel Database Query Builder
// $user_ids = DB::table('expired_users')->lists('user_id');
// DB::table('user')->whereIn('id', $user_ids)->update(['active', 0]);

The native query builder in the example above populates $user_id with array from
expired_users table, then creates second query, which is an update. With
DSQL we have accomplished same thing with a single query and without fetching
results too.

UPDATE
 user
SET
 active = 0
WHERE
 id in (SELECT user_id from expired_users)

If you are creating Connection through constructor, you may have
to explicitly specify property Connection::query_class:

$c = new Connection(['connection'=>$pdo, 'query_class'=>'atk4\dsql\Query_SQLite']);

This is also useful, if you have created your own Query class in a different
namespace and wish to use it.

Using Dumper and Counter

DSQL comes with two nice features - “dumper” and “counter”. Dumper will output
all the executed queries and how much time each query took and Counter will
record how many queries were executed and how many rows you have fetched through
DSQL.

In order to enable those extensions you can simply change your DSN from:

"mysql:host=localhost;port=3307;dbname=testdb"

to:

"dumper:mysql:host=localhost;port=3307;dbname=testdb"
"counter:mysql:host=localhost;port=3307;dbname=testdb"
"dumper:counter:mysql:host=localhost;port=3307;dbname=testdb"

When this DSN is passed into Connection::connect, it will return
a proxy connection object that will collect the necessary statistics and
“echo” them out.

If you would like to do something else with these statistics, you can set
a callback. For Dumper:

$c->callback = function($expression, $time) {
 ...
}

and for Counter:

$c->callback = function($queries, $selects, $rows, $expressions) {
 ...
}

If you have used “dumper:counter:”, then use this:

$c->callback = function($expression, $time) {
 ...
}

$c->connection()->callback = function($queries, $selects, $rows, $expressions) {
 ...
}

Proxy Connection

Connection class is designed to create instances of Expression,
Query as well as executing queries.
A standard Connection class with the use of PDO will do nothing
inside its execute() because Expression::execute would handle all
the work.

However if Connection::connection is NOT PDO object, then
Expression will not know how to execute query and will simply
call:

return $connection->execute($this);

Connection_Proxy class would re-execute the query with a different
connection class. In other words Connection_Proxy allows you
to “wrap” your actual connection class. As a benefit you get to extend
Proxy class implementing some unified features that would work with
any other connection class. Often this will require you to know externals, but
let’s build a proxy class that will add “DELAYED” options for all INSERT
operations:

class Connection_DelayInserts extends \atk4\dsql\Connection_Proxy
{
 function execute(\atk4\dsql\Expression $expr)
 {
 if ($expr instanceof \atk4\dsql\Query) {

 if ($expr->mode == 'insert') {
 $expr->insertOption('delayed');
 }

 }
 return parent::execute($expr);
 }
}

Next we need to use this proxy class instead of the normal one. Frankly, that’s
quite simple to do:

$c = \atk4\dsql\Connection::connect($dsn, $user, $pass);

$c = new Connection_DelayInserts(['connection'=>$c]);

// use the new $c

Connection_Proxy can be used for many different things.

Extending Query Class

You can add support for new database vendors by creating your own
Query class.
Let’s say you want to add support for new SQL vendor:

class Query_MyVendor extends atk4\dsql\Query
{
 // truncate is done differently by this vendor
 protected $template_truncate = 'delete [from] [table]';

 // also join is not supported
 public function join(
 $foreign_table,
 $master_field = null,
 $join_kind = null,
 $_foreign_alias = null
) {
 throw new atk4\dsql\Exception("Join is not supported by the database");
 }
}

Now that our custom query class is complete, we would like to use it by default
on the connection:

$c = \atk4\dsql\Connection::connect($dsn, $user, $pass, ['query_class'=>'Query_MyVendor']);

Adding new vendor support through extension

If you think that more people can benefit from your custom query class, you can
create a separate add-on with it’s own namespace. Let’s say you have created
myname/dsql-myvendor.

	Create your own Query_* class inside your library. If necessary create your
own Connection_* class too.

	Make use of composer and add dependency to DSQL.

	Add a nice README file explaining all the quirks or extensions. Provide
install instructions.

	Fork DSQL library.

	Modify Connection::connect to recognize your database identifier
and refer to your namespace.

	Modify docs/extensions.rst to list name of your database and link to your
repository / composer requirement.

	Copy phpunit-mysql.xml into phpunit-myvendor.xml and make sure that
dsql/tests/db/* works with your database.

	Finally:

	
	Submit pull request for only the Connection class and docs/extensions.rst.

If you would like that your vendor support be bundled with DSQL, you should
contact copyright@agiletoolkit.org after your external class has been around
and received some traction.

Adding New Query Modes

By Default DSQL comes with the following Query Modes:

	select

	delete

	insert

	replace

	update

	truncate

You can add new mode if you wish. Let’s look at how to add a MySQL specific
query “LOAD DATA INFILE”:

	Define new property inside your Query class $template_load_data.

	Add public method allowing to specify necessary parameters.

	Re-use existing methods/template tags if you can.

	Create _render method if your tag rendering is complex.

So to implement our task, you might need a class like this:

use \atk4\dsql\Exception;
class Query_MySQL extends \atk4\dsql\Query_MySQL
{
 protected $template_load_data = 'load data local infile [file] into table [table]';

 public function file($file)
 {
 if (!is_readable($file)) {
 throw Exception(['File is not readable', 'file'=>$file]);
 }
 $this['file'] = $file;
 }

 public function loadData()
 {
 return $this->mode('load_data')->execute();
 }
}

Then to use your new statement, you can do:

$c->dsql()->file('abc.csv')->loadData();

Manual Query Execution

If you are not satisfied with Expression::execute you can execute
query yourself.

	Expression::render query, then send it into PDO::prepare();

	use new $statement to bindValue with the contents of Expression::params;

	set result fetch mode and parameters;

	execute() your statement

Exception Class

DSQL slightly extends and improves Exception class

	
class Exception

	

The main goal of the new exception is to be able to accept additional
information in addition to the message. We realize that often $e->getMessage()
will be localized, but if you stick some variables in there, this will no longer
be possible. You also risk injection or expose some sensitive data to the user.

	
Exception::__construct($message, $code)

	Create new exception

	Parameters

	
	$message (string|array) – Describes the problem

	$code (int) – Error code

Usage:

throw new atk4\dsql\Exception('Hello');

throw new atk4\dsql\Exception(['File is not readable', 'file'=>$file]);

When displayed to the user the exception will hide parameter for $file, but you
still can get it if you really need it:

	
Exception::getParams()

	Return additional parameters, that might be helpful to find error.

	Returns

	array

Any DSQL-related code must always throw atk4dsqlException. Query-related
errors will generate PDO exceptions. If you use a custom connection and doing
some vendor-specific operations, you may also throw other vendor-specific
exceptions.

Vendor support and Extensions

	Vendor

	Support

	PDO

	Dependency

	MySQL

	Full

	mysql:

	native, PDO

	SQLite

	Full

	sqlite:

	native, PDO

	Oracle

	Untested

	oci:

	native, PDO

	PostgreSQL

	Untested

	pgsql:

	native, PDO

	MSSQL

	Untested

	mssql:

	native, PDO

Note

Most PDO vendors should work out of the box

Other Interesting Drivers

	Class

	Support

	PDO

	Dependency

	Connection_Dumper

	Full

	dumper:

	native, Proxy

	Connection_Counter

	Full

	counter:

	native, Proxy

3rd party vendor support

	Class

	Support

	PDO

	Dependency

	Connection_MyVendor

	Full

	myvendor:

	http://github/test/myvendor

See Adding new vendor support through extension for more details on how to add support for your driver.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__construct() (Exception method)

 	__debugInfo() (Expression method)

 	__toString() (Expression method)

 	_consume() (Expression method)

 	
 	_escape() (Expression method)

 	_escapeSoft() (Expression method)

 	_param() (Expression method)

 	_set_args() (Query method)

A

 	
 	andExpr() (Query method)

 	
 	atomic() (Connection method)

B

 	
 	beginTransaction() (Connection method)

C

 	
 	caseExpr() (Query method)

 	commit() (Connection method)

 	
 	connect() (Connection method)

 	Connection (class), [1]

 	connection (Expression property)

D

 	
 	debug (Expression property)

 	debug() (Expression method)

 	defaultField (Query property)

 	
 	delete() (Query method)

 	dsql() (Connection method)

 	(Query method)

E

 	
 	escape() (Expression method)

 	Exception (class)

 	execute() (Connection method)

 	(Expression method)

 	
 	expr() (Connection method)

 	(Expression method)

 	Expression (class)

F

 	
 	field() (Query method)

G

 	
 	get() (Expression method)

 	getDebugQuery() (Expression method)

 	getOne() (Expression method)

 	
 	getParams() (Exception method)

 	getRow() (Expression method)

 	group() (Query method)

H

 	
 	having() (Query method)

I

 	
 	insert() (Query method)

 	
 	inTransaction() (Connection method)

J

 	
 	join() (Query method)

L

 	
 	limit() (Query method)

M

 	
 	mode (Query property)

O

 	
 	option() (Query method)

 	order() (Query method)

 	
 	orExpr() (Query method)

 	otherwise() (Query method)

P

 	
 	paramBase (Expression property)

 	
 	params (Expression property)

Q

 	
 	Query (class)

R

 	
 	render() (Expression method)

 	replace() (Query method)

 	
 	reset() (Query method)

 	rollBack() (Connection method)

S

 	
 	select() (Query method)

 	
 	set() (Query method)

T

 	
 	table() (Query method)

 	template (Expression property)

 	template_delete (Query property)

 	template_insert (Query property)

 	
 	template_replace (Query property)

 	template_select (Query property)

 	template_truncate (Query property)

 	template_update (Query property)

 	truncate() (Query method)

U

 	
 	update() (Query method)

W

 	
 	when() (Query method)

 	
 	where() (Query method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to DSQL’s documentation!

 		
 Overview

 		
 Goals of DSQL

 		
 DSQL by example

 		
 DSQL is Part of Agile Toolkit

 		
 Requirements

 		
 Installation

 		
 Getting Started

 		
 Contributing

 		
 Guidelines

 		
 Review and Approval

 		
 Running the tests

 		
 Reporting a security vulnerability

 		
 Quickstart

 		
 Basic Concepts

 		
 Getting Started

 		
 Creating Objects and PDO

 		
 Query Building

 		
 Query Mode

 		
 Fetching Result

 		
 Connection

 		
 Expressions

 		
 Properties, Arguments, Parameters

 		
 Parameters

 		
 Creating Expression

 		
 Expression Template

 		
 Nested expressions

 		
 Rendering

 		
 Executing Expressions

 		
 Magic an Debug Methods

 		
 Escaping Methods

 		
 Other Properties

 		
 Queries

 		
 Method invocation principles

 		
 Query Modes

 		
 Chaining

 		
 Using query as expression

 		
 Modifying Select Query

 		
 Setting Table

 		
 Setting Fields

 		
 Setting where and having clauses

 		
 Grouping results by field

 		
 Joining with other tables

 		
 Limiting result-set

 		
 Ordering result-set

 		
 Insert and Replace query

 		
 Set value to a field

 		
 Set Insert Options

 		
 Update Query

 		
 Set Conditions

 		
 Set value to a field

 		
 Other settings

 		
 Delete Query

 		
 Set Conditions

 		
 Other settings

 		
 Dropping attributes

 		
 Other Methods

 		
 Properties

 		
 Results

 		
 Transactions

 		
 Advanced Topics

 		
 Advanced Connections

 		
 Using DSQL without Connection

 		
 Using in Existing Framework

 		
 Using Dumper and Counter

 		
 Proxy Connection

 		
 Extending Query Class

 		
 Adding new vendor support through extension

 		
 Adding New Query Modes

 		
 Manual Query Execution

 		
 Exception Class

 		
 Vendor support and Extensions

 		
 Other Interesting Drivers

 		
 3rd party vendor support

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/agiletoolkit.png
Agile Toolkit -

fork GitHub

